使用 OpenCV 来做单元测试
最近一直都在搞图像传输,webrtc 可以检测网络状况来调整码率。为了探究图像传输中损失了多少数据,用 opencv 来计算输入视频流和输出视频流的相似性
不过本人作为一个不懂算法,不懂C++, 不懂openCV 的菜鸡。(我还真把这个东西给做出来了
如何检测视频视频的相似性
先来科普两个概念:
-
峰值信噪比 PSNR (Peak signal-to-noise ratio) https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
-
结构相似性 SSIM (Structural similarity) https://en.wikipedia.org/wiki/Structural_similarity
这个处理本身是把视频拆成图像帧,然回分成 RGB 分辨对比
然回把这个代码直接拿过来用就行(好敷衍。。。
代码来源:https://docs.opencv.org/master/d5/dc4/tutorial_video_input_psnr_ssim.html
#include <iostream> // for standard I/O
#include <string> // for strings
#include <iomanip> // for controlling float print precision
#include <sstream> // string to number conversion
#include <opencv2/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
#include <opencv2/imgproc.hpp> // Gaussian Blur
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp> // OpenCV window I/O
using namespace std;
using namespace cv;
double getPSNR ( const Mat& I1, const Mat& I2);
Scalar getMSSIM( const Mat& I1, const Mat& I2);
static void help()
{
cout
<< "------------------------------------------------------------------------------" << endl
<< "This program shows how to read a video file with OpenCV. In addition, it "
<< "tests the similarity of two input videos first with PSNR, and for the frames "
<< "below a PSNR trigger value, also with MSSIM." << endl
<< "Usage:" << endl
<< "./video-input-psnr-ssim <referenceVideo> <useCaseTestVideo> <PSNR_Trigger_Value> <Wait_Between_Frames> " << endl
<< "--------------------------------------------------------------------------" << endl
<< endl;
}
int main(int argc, char *argv[])
{
help();
if (argc != 5)
{
cout << "Not enough parameters" << endl;
return -1;
}
stringstream conv;
const string sourceReference = argv[1], sourceCompareWith = argv[2];
int psnrTriggerValue, delay;
conv << argv[3] << endl << argv[4]; // put in the strings
conv >> psnrTriggerValue >> delay; // take out the numbers
int frameNum = -1; // Frame counter
VideoCapture captRefrnc(sourceReference), captUndTst(sourceCompareWith);
if (!captRefrnc.isOpened())
{
cout << "Could not open reference " << sourceReference << endl;
return -1;
}
if (!captUndTst.isOpened())
{
cout << "Could not open case test " << sourceCompareWith << endl;
return -1;
}
Size refS = Size((int) captRefrnc.get(CAP_PROP_FRAME_WIDTH),
(int) captRefrnc.get(CAP_PROP_FRAME_HEIGHT)),
uTSi = Size((int) captUndTst.get(CAP_PROP_FRAME_WIDTH),
(int) captUndTst.get(CAP_PROP_FRAME_HEIGHT));
if (refS != uTSi)
{
cout << "Inputs have different size!!! Closing." << endl;
return -1;
}
const char* WIN_UT = "Under Test";
const char* WIN_RF = "Reference";
// Windows
namedWindow(WIN_RF, WINDOW_AUTOSIZE);
namedWindow(WIN_UT, WINDOW_AUTOSIZE);
moveWindow(WIN_RF, 400 , 0); //750, 2 (bernat =0)
moveWindow(WIN_UT, refS.width, 0); //1500, 2
cout << "Reference frame resolution: Width=" << refS.width << " Height=" << refS.height
<< " of nr#: " << captRefrnc.get(CAP_PROP_FRAME_COUNT) << endl;
cout << "PSNR trigger value " << setiosflags(ios::fixed) << setprecision(3)
<< psnrTriggerValue << endl;
Mat frameReference, frameUnderTest;
double psnrV;
Scalar mssimV;
for(;;) //Show the image captured in the window and repeat
{
captRefrnc >> frameReference;
captUndTst >> frameUnderTest;
if (frameReference.empty() || frameUnderTest.empty())
{
cout << " < < < Game over! > > > ";
break;
}
++frameNum;
cout << "Frame: " << frameNum << "# ";
psnrV = getPSNR(frameReference,frameUnderTest);
cout << setiosflags(ios::fixed) << setprecision(3) << psnrV << "dB";
if (psnrV < psnrTriggerValue && psnrV)
{
mssimV = getMSSIM(frameReference, frameUnderTest);
cout << " MSSIM: "
<< " R " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[2] * 100 << "%"
<< " G " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[1] * 100 << "%"
<< " B " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[0] * 100 << "%";
}
cout << endl;
imshow(WIN_RF, frameReference);
imshow(WIN_UT, frameUnderTest);
char c = (char)waitKey(delay);
if (c == 27) break;
}
return 0;
}
double getPSNR(const Mat& I1, const Mat& I2)
{
Mat s1;
absdiff(I1, I2, s1); // |I1 - I2|
s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
s1 = s1.mul(s1); // |I1 - I2|^2
Scalar s = sum(s1); // sum elements per channel
double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
if( sse <= 1e-10) // for small values return zero
return 0;
else
{
double mse = sse / (double)(I1.channels() * I1.total());
double psnr = 10.0 * log10((255 * 255) / mse);
return psnr;
}
}
Scalar getMSSIM( const Mat& i1, const Mat& i2)
{
const double C1 = 6.5025, C2 = 58.5225;
/***************************** INITS **********************************/
int d = CV_32F;
Mat I1, I2;
i1.convertTo(I1, d); // cannot calculate on one byte large values
i2.convertTo(I2, d);
Mat I2_2 = I2.mul(I2); // I2^2
Mat I1_2 = I1.mul(I1); // I1^2
Mat I1_I2 = I1.mul(I2); // I1 * I2
/*************************** END INITS **********************************/
Mat mu1, mu2; // PRELIMINARY COMPUTING
GaussianBlur(I1, mu1, Size(11, 11), 1.5);
GaussianBlur(I2, mu2, Size(11, 11), 1.5);
Mat mu1_2 = mu1.mul(mu1);
Mat mu2_2 = mu2.mul(mu2);
Mat mu1_mu2 = mu1.mul(mu2);
Mat sigma1_2, sigma2_2, sigma12;
GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
sigma1_2 -= mu1_2;
GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
sigma2_2 -= mu2_2;
GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
sigma12 -= mu1_mu2;
Mat t1, t2, t3;
t1 = 2 * mu1_mu2 + C1;
t2 = 2 * sigma12 + C2;
t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
t1 = mu1_2 + mu2_2 + C1;
t2 = sigma1_2 + sigma2_2 + C2;
t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
Mat ssim_map;
divide(t3, t1, ssim_map); // ssim_map = t3./t1;
Scalar mssim = mean(ssim_map); // mssim = average of ssim map
return mssim;
}
嗯? 不想看英文。这里有个中文版(不过不建议看这个中文版)https://www.w3cschool.cn/opencv/opencv-v4na2dr6.html
之后编译源码
# 安装依赖 我在 debian:buster 上测试运行的
apt-get update -y && apt-get install -y libopencv-dev g++ wget
g++ video-input-psnr-ssim.cpp -o video-input-psnr-ssim -I /usr/include/opencv4 -L /usr/lib -lopencv_core -lopencv_highgui -lopencv_imgproc -lopencv_videoio
这样来运行:
wget https://github.com/opencv/opencv/raw/master/samples/data/Megamind.avi
wget https://github.com/opencv/opencv/raw/master/samples/data/Megamind_bugy.avi
./video-input-psnr-ssim Megamind.avi Megamind_bugy.avi 35 10
之后就是把这个流程自动化
这个要跑在 ci 里自动输出结果的。显示窗口可不行,还要改造一下。直接去掉窗口。很容易,C++ 的基础
把结果算平均值已经有人写好了 https://github.com/yeokm1/ssim
直接把那段代码拿过来就能用
我们用 gstreamer videotestsrc 来做视频源
gst-launch-1.0 videotestsrc ! videoconvert ! autovideosink
然回用 webrtc 去发送这段视频
可以用这个项目来发送视频 https://github.com/pion/webrtc/tree/master/examples/play-from-disk
当然是可以使用 cgo 的。用go 去调用 gstreamer 。这样可以少一步图像转换 https://github.com/pion/example-webrtc-applications/tree/master/gstreamer-send
然回另一端接收图像。保存成文件 https://github.com/pion/webrtc/tree/master/examples/save-to-disk
之后把这个坨都放在 gitlab ci 里
我最终输出的结果长这样:
< < < === END === > > >
Final Results
R 96.10% G 95.99% B 92.14%
Similarity = 94.74%
然回在 Setting
> CI / CD
> General pipelines
> Test coverage parsing
里这样写:
Similarity = \d+.\d+%
这样就把视频相识度结果输出到代码覆盖率上了(对于这种图像传输算相似度才有意义 (((大雾